1 MARK QUESTIONS

1. Write the POS form of boolean function H, which is represented in a truth table as follows:

Х	Y	Ζ	Н
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

2. Write the SOP form of boolean function G, which is represented in truth table as follows:

Р	Q	R	G
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

3. Write the POS form of boolean function *H*, which is represented in a truth table as follows:

Α	В	С	Н
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

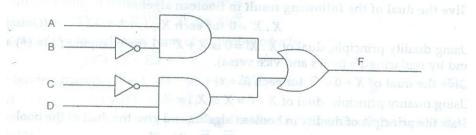
4. Write the POS form a boolean function G, which is represented in a truth table as follows:

и	ν	W	G
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

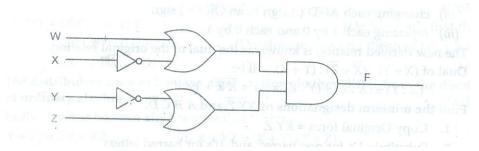
- 5. Draw a logic circuit diagram for the boolean expression: \overline{X} . (Y + Z)
- 6. Draw a logic circuit diagram for the boolean expression: A.(B+C)
- 7. Draw a logic circuit diagram for the boolean expression: \overline{A} .(B+C)
- 8. Prove that $X \cdot (X + Y) = X$ by truth table method.
- 9. Find the complement of the following Boolean function:

 $F_1 = AB' C'D'$

- 10. In the Boolean Algebra, verify using truth table that X + XY for each X, y in (0, 1).
- 11. In the Boolean Algebra, verify using truth table that (X + Y)' + X'Y' for each X' Y in (0, 1).
- 12. Give the dual of the following result in Boolean Algebra
 - X . X' = for each X.
- 13. Define the followings:
 - (a) Minterm (b) Maxterm (c) Canonical form
- 14. Interpret the following logic Circuit as Boolean expression:



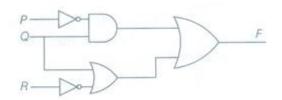
15. Interpret the following Logic Circuit as Boolean Expression:



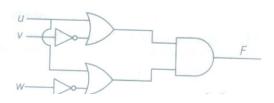
- 16. Write the dual of the Boolean expression A + B' .C.
- 17. Write the dual of the Boolean expression (B' + C) . A.
- 18. Represent the boolean expression X(Y' + Z) with help of NOR gates only.
- 19. State Demorgan's Laws:
- 20. Which gates are called Universal gates and why?

2 Marks Questions

- 1 State DeMorgan's laws. Verify one of the DeMorgan's laws using a truth table.
- 2 Draw a logic circuit for the following boolean expression.
 - A.B' +(C +B') .A'
- 3 Obtain the Boolean expression for the logic circuit shown below:



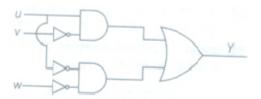
- 4 Verify the following using boolean expression using truth table:
 - (i) X + 0 = X
 - (ii) X + X' = 1
- 5 Write the equivalent Boolean expression for the following logic circuit:



6 Verify the following boolean expression using truth table:

(i)
$$X \cdot X' = 0$$
 (ii) $X + 1 = 1$

7 Write the equivalent boolean expression for the following logic circuit:



- 8. Represent the Boolean expression X. Y' + Z with the help of NOR gates only.
- 9. Represent the Boolean expression (X + Y') .Z with the help of NAND gates only.

3 Marks Questions

- 1. Obtain the minimal form for the following boolean expression using Karnaugh's Map: $F(A, B, C, D) = \Sigma(1, 4, 5, 9, 11, 12, 13, 15)$
- 2. Obtain a simplified form for the following boolean expression using Karnaugh's Map: $F(P, Q, R, S) = \Sigma(0, 2, 4, 5, 6, 7, 8, 10, 13, 15)$

3. Obtain the minimal form for the following boolean expression using Karnaugh's Map: $H(P, Q, R, S) = \Sigma(0, 1, 2, 3, 5, 7, 8, 9, 10, 14, 15)$

4. Obtain the minimal form for the following boolean expression using Karnaugh's Map: $F(U, V, W, Z) = \Sigma(0, 1, 2, 3, 6, 7, 8, 9, 10, 13, 15)$

- 5. Reduce the following boolean expression using K-map: $F(P, Q, R, S) = \Sigma(1, 2, 3, 4, 5, 6, 7, 8, 10)$
- 6. Reduce the following boolean expression using K-map: $F(A, B, C, D) = \sum (2, 3, 4, 5, 6, 7, 8, 10, 11)$

- 7. Reduce the following boolean expression using K-map: $F(A, B, C, D) = \Sigma(0, 1, 2, 4, 5, 6, 8, 10,)$
- 8. Reduce the following boolean expression using K-map: $F(P, Q, R, S) = \Sigma(0, 1, 2, 4, 5, 6, 8, 12)$
- 9. Reduce the following boolean expression using K-map: $F(A, B, C, D) = \Sigma(3, 4, 5, 6, 7, 13, 15)$
- 10. Reduce the following boolean expression using K-map: $F(u, v, w, z) = \Sigma(3, 5, 7, 10, 11, 13, 15)$

BOOLEAN ALGEBRA-SOLUTION

1 MARK QUESTIONS

ι.	X	Y	Ζ	H	Maxterm
	0	0	0	1	$X + Y + \underline{Z}$
	0	0	1	0	$X + \underline{Y} + Z$
	0	1	0	1	$X + \underline{Y} + \underline{Z}$
	0	1	1	1	$\underline{X} + Y + Z$
	1	0	0	1	$\underline{X} + Y + \underline{Z}$
	1	0	1	0	$\underline{X} + Y + Z$
	1	1	0	0	$\underline{X} + \overline{Y} + Z$
	1	1	1	1	$X + \overline{Y} + \overline{Z}$

To get the POS form, we need to maxterms for all those input combinations that produce output

0. Thus,

as

$$H(X, Y, Z) = (X + Y + \overline{Z}) \cdot (\overline{X + Y} + \overline{Z}) \cdot (\overline{X + Y} + \overline{Z})$$

2.	Р	Q	R	GMi	interm
	0	0	0	0	\overline{P} . \overline{Q} . \overline{R}
	0	0	1	0	\overline{P} . \overline{Q} . R
	0	1	0	1	\overline{P} .Q. \overline{R}
	0	1	1	1	<u>P</u> .Q. <u>R</u>
	1	0	0	1	P .Q . R
	1	0	1	0	P .Q . R
	1	1	0	1	P .Q . R
	1	1	1	1	P .Q . R

To get the SOP form, we need to sum minterms for all those combinations that produce output as 1.

Thus,

$$G(P, Q, R) = (\overline{P.Q.R}) + (\overline{P.Q.R}) + (P.Q.R) + (\overline{P.Q.R}) + (\overline{P.Q.R}) + (\overline{P.Q.R})$$

3.

Α	В	С	Н	Maxterm
0	0	0	0	A + B + C
0	0	1	1	$A+B+\overline{C}$
0	1	0	1	$A + \overline{B} + C$
0	1	1	1	A + B + C
1	0	0	1	$\overline{A} + B + C$
1	0	1	0	$\overline{A} + B + \overline{C}$
1	1	0	0	$\overline{A} + \overline{B} + C$
1	1	1	1	$\overline{A} + \overline{B} + \overline{C}$

To get the POS from, we need to product maxterms for all those input combinations that produce

output as 0. Thus,

4.	u	v	w	GMa	axterm
	0	0	0	1	u + v + w
	0	0	1	1	$u + v + \overline{w}$
	0	1	0	0	u + v + w
	0	1	1	0	u + v + w
	1	0	0	1	$\overline{u} + v + w$
	1	0	1	1	$\overline{u} + \underline{v} + \overline{w}$
	1	1	0	0	$\overline{u} + v + w$
	1	1	1	1	$\overline{u} + \overline{v} + \overline{w}$

 $H(A, B, C) = (A + B + C). (\overline{A} + B + \overline{C}) . (\overline{A} + \overline{B} + C).$

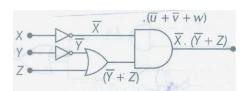
To get the POS form, we need to product maxterms for all those input combinations that produce output

0. Thus,

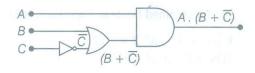
G(u, v, w) = (u + v + w).(u + v + w).(u + v + w).(u + v + w)

5.

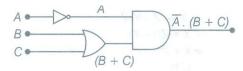
as



6.



7.



8.

Х	Y	X + Y	X. (X + Y)
0	0	0	0
0	1	1	0
1	0	1	1
1	1	1	1

From the above table it is obvious that $X \cdot (X + Y) = X$ because both the columns are identical.

9.
$$(AB' + CD') = (AB')' \cdot (C'D')' = (A' + B'') \cdot (C'' + D'')$$

(De Morgan's first <u>theorem</u>) ____ (De Morgan's second theorem i.e. $A.B = \overline{A} +$

B)

= (A' + B) .(C + D)

10. As the expression X + XY is a two variable expression, so we require possible combinations of values of X, Y. Truth Table will be as follows:

(X'' = X)

Х	Y	X + Y	X. (X + Y)
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

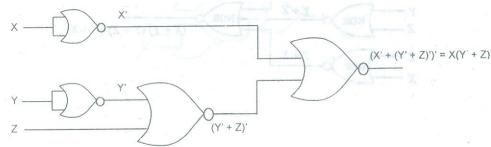
Comparing the columns X + XY and X, we find, contents of both the columns are identical, hence verified.

11. As it is a 2 variable expression, truth table will be as follows:

X	Y	X + Y	(X + Y)'	X'	Y'	X'Y'
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

Comparing the columns (X + Y)' and X'Y', both of the columns are identical, hence verified.

- 12. Using duality principle, dual of X . X' = 0 is X + X' = 1 (By changing (.) to (+) and viceversa and by replacing 1's by 0's and vice versa).
- (a) A Minterm is a product of all the literals (with or without the bar) within the logic system.
 (b) A Maxterm is a sum of all the literals (with or without the bar) within the logic system.
 (c) Aboolean expression composed entirely either of minterms or Maxterms is referred to as canonical expression.
- 14. $F = A\overline{B} + \overline{C}D$
- 15. F =(W + X) (Y + Z).
- 16. Dual of the Boolean expression $A + B' \cdot C$ is $A \cdot (B' + C)$.
- 17. Dual of the Boolean expression (B' + C). A is (B' . C) + A.
- 18. The given expression may also be written as



19.	De Morgan's first theorem. It states that	X + Y = X . Y
	De Morgan's second theorem. It states that	$X \cdot Y = X + Y$

20. NAND and NOR gates are less expensive and easier to design. Also, other switching functions and

(AND, OR) can easily be implemented using NAND/NOR gates. Thus, these (NAND/NOR) gates are also referred to *as Universal Gates*.

2 Marks Questions

1. DeMorgan's Laws:

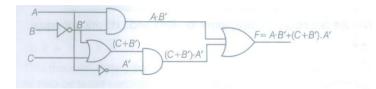
It states that

(i)
$$(\overline{A + B}) = \overline{A}.\overline{B}$$
 (ii) $(\overline{A}.\overline{B}) = \overline{A} + \overline{B}$
Truth table for $\overline{A + B} = \overline{A}.\overline{B}$

Α	В	A+B	(A+B)	Ā	В	A.B
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

Column 4 and Column 7 are equal, first law is proved.

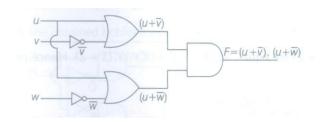
2. $F = A \cdot B' + (C + B') \cdot A'$



3. $P \longrightarrow \overline{P} \longrightarrow \overline{P.Q}$ $Q \longrightarrow \overline{PQ} + (Q + \overline{R})$ $R \longrightarrow \overline{R} \longrightarrow (Q + \overline{R})$ So, the obtained boolean expression is F = P'Q + (Q + R')

	0	X + 0	_	Х	X'	X + X'
0	0	0		0	1	1
1	0	1		1	0	1

5.

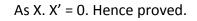


So, the obtained boolean expression if $F = (u + v) \cdot (u + w)$

6.

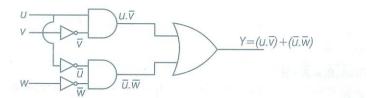
х

X.X' = 0			(ii)	(ii) X + 1 = 1			
X' X.X'		Х	1	X + 1			
0	1	0		0	1		
1	0	0		1	1		



As X + 1 =1.Hence proved.

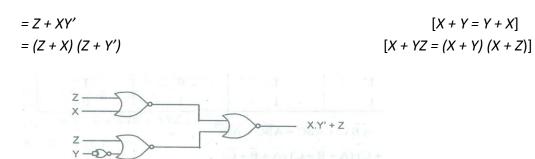
7.



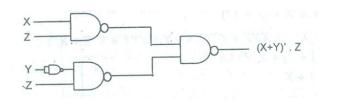
So, the obtained boolean expression is $Y = (u, \overline{v}) + (\overline{u} \cdot \overline{w})$

law)

8. *X*. *Y*' + *Z*

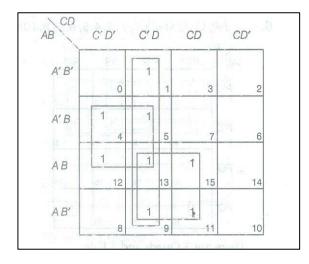


9. $(X + Y') \cdot Z = X \cdot Z + Y' \cdot Z$



3 Marks Questions

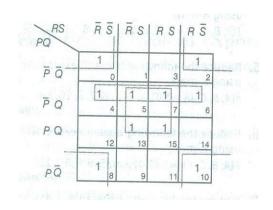
1. $F(A, B, C, D) = \Sigma(1, 4, 5, 9, 11, 12, 13, 15)$



There are 3 Quads:

Quad 1 ($m_1 + m_5 + m_9 + m_{13}$) reduces to C'D Quad 2 ($m_4 + m_5 + m_{12} + m_{13}$) reduces to BC' Quad 3 ($m_9 + m_{11} + m_{13} + m_{15}$) reduces to AD Hence, the final expression is: F(A, B, C) = C'D + BC' + AD

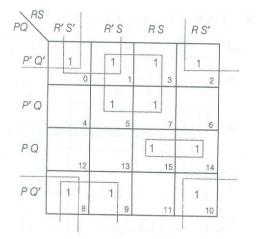
2. $F(P, Q, R, S) = \Sigma(0, 2, 4, 5, 6, 7, 8, 10, 13, 15)$



There are three Quads:

Quad 1 ($m_4 + m_5 + m_6 + m_7$) reduces to PQ Quad 2 ($m_5 + m_7 + m_{13} + m_{15}$) reduces to QS Quad 3 ($m_0 + m_2 + m_8 + m_{10}$) reduces to QS Hence, the final expression is: F(P, Q, R, S) = PQ + QS + QS

3. $H(P, Q, R, S) = \Sigma(0, 1, 2, 3, 5, 7, 8, 9, 10, 14, 15)$



There are three Quads and 1 Pair:

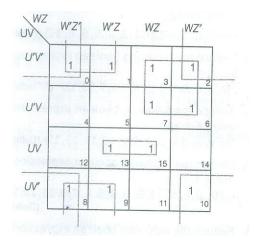
Quad 1 ($m_0 + m_2 + m_8 + m_{10}$) reduces to QS Quad 2 ($m_1 + m_3 + m_5 + m_7$) reduces to PS Quad 3 ($m_0 + m_1 + m_8 + m_9$) reduces to QR

Pair 1 ($m_{14} + m_{15}$) reduces to PQR

Hence, the final expression is:

H(P,Q,R,S) = Q' S' + P' S + Q' R' + PQR

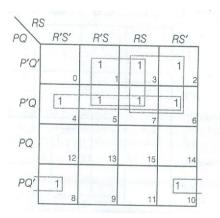
4. $F(U, V, W, Z) = \Sigma(0, 1, 2, 3, 6, 7, 8, 9, 10, 13, 15)$



There are three Quads and 1 Pair:

Quad 1 ($m_0 + m_2 + m_8 + m_{10}$) reduces to VZQuad 2 ($m_0 + m_1 + m_8 + m_9$) reduces to V W Quad 3 ($m_2 + m_3 + m_6 + m_7$) reduces to U W Pair 1 ($m_{13} + m_{15}$) reduces to UVZHence, the final expression is: F(U, V, W, Z) = V'Z' + V'W' + U'W + UVZ

5. $F(P, Q, R, S) = \sum (1, 2, 3, 4, 5, 6, 7, 8, 10)$



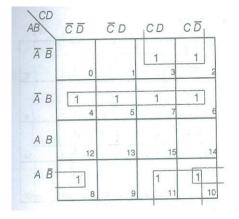
There are three Quads and 1 Pair: Quad 1 ($m_1 + m_3 + m_5 + m_7$) reduces to *P'S* Quad 2 ($m_4 + m_5 + m_6 + m_7$) reduces to *P'Q* Quad 3 ($m_2 + m_3 + m_6 + m_7$) reduces to *P'R*

Pair 1 (m_8 + m_{10}) reduces to PQ'S'

Hence, the final expression is:

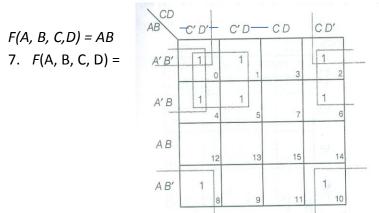
F(P,Q,R,S) = P'S + P'Q + P'R + PQ'S'

6. $F(A, B, C, D) = \Sigma (1, 3, 4, 5, 6, 7, 12, 13)$



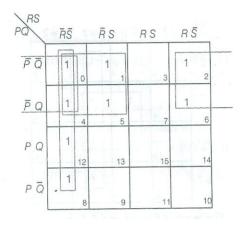
There are 2 Quads and 1 Pair:

Quad 1 ($m_4 + m_5 + m_6 + m_7$) reduces to *AB* Quad 2 ($m_2 + m_3 + m_{10} + m_{11}$) reduces to *B C* Pair 1 ($m_8 + m_{10}$) reduces to *ABD*



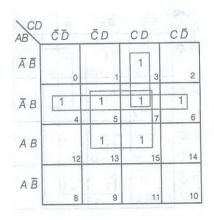
Hence, the final expression is: +BC + ABD Σ (1, 2, 4, 5, 6, 8, 10) There are 3 Quads: Quad 1 ($m_0 + m_1 + m_4 + m_5$) reduces to A'C' Quad 2 ($m_0 + m_2 + m_8 + m_{10}$) reduces to B' D' Quad 3 ($m_0 + m_2 + m_4 + m_6$) reduces to A' D' Hence, the final expression is: F(A, B, C, D) = A'C' + B' D' + A' D'

8. $F(P, Q, R, S) = \sum (1, 2, 4, 5, 6, 8, 10, 12)$



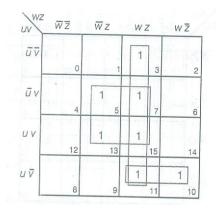
There are 3 Quads: Quad 1 ($m_0 + m_4 + m_8 + m_{12}$) reduces R S Quad 2 ($m_0 + m_1 + m_4 + m_5$) reduces P R Quad 3 ($m_0 + m_2 + m_4 + m_6$) reduces S P Hence, the final expression is: F(P, Q, R, S) = RS + P R + S P

9. $F(A, B, C, D) = \Sigma(3, 4, 5, 6, 7, 13, 15)$



There are 2 Quads and 1 Pair: Quad 1 ($m_4 + m_5 + m_6 + m_7$) reduces to *AB* Quad 2 ($m_5 + m_7 + m_{13} + m_{15}$) reduces to *BD* Pair 1 ($m_3 + m_7$) reduces to *ACD* Hence, the final expression is: F(A, B, C, D) = AB + BD + ACD

10. $F(u, v, w, z) = \sum (3, 5, 7, 10, 11, 13, 15)$



There are 2 Quads and 1 Pair: Quad 1 ($m_3 + m_7 + m_{11} + m_{15}$) reduces to wz Quad 2 ($m_5 + m_7 + m_{13} + m_{15}$) reduces to vz Pair 1 ($m_{10} + m_{11}$) reduces to u v wHence, the final expression is: F(u, v, w, z) = w z + v z + u v w